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ABSTRACT

Let {Gr,i} be a sequence of r-generator n-dimensional Kleinian groups

and Gr be its algebraic limit group. In this paper, we prove that Gr

is a Kleinian group if {Gr,i} satisfies some conditions. Our results are

generalizations of the corresponding known ones.

1. Introduction

In this paper, we will adopt the same notations as in [1, 5, 17] such as the n-

dimensional sense-preserving Möbius group M(R̄n), the n-dimensional Clifford

group Γn and the n-dimensional Clifford matrix group SL(2, Γn).

Let

PSL(2, Γn) = SL(2, Γn)/{±I},

where I denotes the identity matrix.

By [1], PSL(2, Γn) is isomorphic to M(R̄n). We will identify the element in

M(R̄n) with its representation in PSL(2, Γn).

In the following, I also denotes the identity mapping in M(R̄n).

A subgroup G of M(R̄n) is called elementary if it has a finite G-orbit in

H̄n+1(= Hn+1 ∪ R̄n) (cf., [5]). Otherwise, we will call G non-elementary.

In this paper, a Kleinian group means a non-elementary and discrete sub-

group in M(R̄n).
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Let {Gi} be a sequence of subgroups in M(R̄n) and each generated by

g1,i, g2,i, . . . , gr,i, where r = 1, 2, . . .. If for each 1 ≤ t ≤ r,

gt,i → gt ∈ M(R̄n) as i → ∞,

then we call that {Gi} algebraically converges to G = 〈g1, g2, . . . , gr〉 and G is

the algebraic limit group of r-generator groups {Gi}. In order to emphasize r,

1 ≤ r ≤ ∞, we always replace Gi and G by Gr,i and Gr, respectively. If for each

i, Gr,i is a Kleinian group, the problem of when Gr is still a Kleinian group was

investigated by a number of authors.

When n = 2 and r < ∞, Jørgensen and Klein proved ([12]) the following.

Theorem JK: If each Gr,i is a r-generator Kleinian group, then the algebraic

limit group Gr is also a Kleinian group.

It easily follows from the examples in [16] or [17] that Theorem JK could not

be extended to n-dimensional case (n ≥ 3) without any modifications. Under

what condition(s) can one get an analogue of Theorem JK in M(R̄n) when

n ≥ 3? This problem has been discussed by several authors.

When r < ∞, as one of the main results in [13], Martin proved

Theorem M: Let Gr be the algebraic limit group of a sequence of r-generator

Kleinian groups of M(R̄n) of uniformly bounded torsion. Then Gr is a Kleinian

group.

Here a subset X of M(R̄n) is said to have uniformly bounded torsion if there

exists a positive number K with the following property:

if f ∈ X, then ord(f) ≤ K or ord(f) = ∞.

It easily follows from Theorem M and its proof that

Corollary 1.1: If each Gr,i is a torsion-free Kleinian group, then Gr is also

a torsion-free Kleinian group.

See [21] for further discussions about Corollary 1.1.

When r ≤ ∞, Apanasov ([2] or [3, 4]) proved

Theorem A: Let r ≤ ∞. If the generator system {gt,i}r
t=1 of Gr,i satisfies that

none are elliptic and no two have any fixed point in common, and if all Gr,i are

Kleinian groups, then for each t (1 ≤ t ≤ r), gt = limi→∞ gt,i is different from I.

Obviously, when n = 2, Theorem M does not coincide with the classical result,

Theorem JK. In [13], Martin pointed out that it is worthwhile remarking how

one may weaken the condition “uniformly bounded torsion” in Theorem M.
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In this paper, we consider the mentioned problem further. Our main results

are

Theorem 1.1: Let r < ∞ and Gr be the algebraic limit group of a sequence of

r-generator Kleinian groups {Gr,i} of M(R̄n). If {Gr,i} satisfies EP -conditon

(see Section 2 for the definition), then Gr is a Kleinian group.

Theorem 1.2: Let r ≤ ∞. If the generator system {gt,i}r
t=1 of Gr,i satisfies

that none are elliptic and no two have any fixed point in common, and if all

Gr,i are Kleinian groups, then

(1) all the generators gt = limi→∞ gt,i are neither elliptic, nor fixed-point-free,

nor I;

(2) Gr is a Kleinian group if Gr is non-elementary and WY (Gr) (see Section

2 for the definition) is finite.

Remark 1.1: By Proposition 2.3 in Section 2, we know that Theorem 1.1 is a

generalization of Theorem M when n ≥ 3. When n = 2, Proposition 2.2 implies

that Theorem 1.1 completely coincides with Theorem JK. Theorem 1.2 is a

further discussion of Theorem A.

2. Preliminaries

For f ∈ M(R̄n), let f̃ denote the Poincaré extension of f (cf., [5]),

fix(f) = {x ∈ R̄n : f(x) = x}, f ix(f̃) = {z ∈ Hn+1 : f̃(z) = z}

and for a set M , let card(M) denote its cardinality.

Now, we give a classification to the elements of M(R̄n) as follows.

Non-trivial element f ∈ M(R̄n) is called

(1) fixed-point-free if card[fix(f)] = 0;

(2) loxodromic if card[fix(f)] > 0 and f can be conjugate in SL(2, Γn) to
(

rλ

0

0

r−1λ′

)

, where r > 0, r 6= 1, λ ∈ Γn and |λ| = 1;

(3) parabolic if card[fix(f)] > 0 and f can be conjugate in SL(2, Γn) to
(

a

0

b

a′

)

, where a, b ∈ Γn, |a| = 1, b 6= 0 and ab = ba′;

(4) elliptic if card[fix(f)] > 0 and f can be conjugate in SL(2, Γn) to
(

u

0

0

u′

)

,

where u ∈ Γn, |u| = 1 and u /∈ R.

Proposition 2.1:

(1) f ∈ M(R̄n) is fixed-point-free if and only if card[fix(f̃)] = 1. M(R̄n)

contains a fixed-point-free element if and only if n is odd and n ≥ 3;
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(2) f(6= I) is elliptic if and only if card[fix(f̃ )] = ∞.

Now we introduce the following conditions. Let {Gi} be a sequence of sub-

groups of M(R̄n).

Property A: We say that {Gi} satisfies Property A if the set {Gi} contains

no sequence {〈fik
, gik

〉} which satisfies that both fik
, gik

∈ Gik
(∈ {Gi}) are

elliptic and

fix(fik
) ∩ fix(gik

) = ∅, card(fix(fik
)) = card(fix(gik

)) = 2,

fik
→ I and gik

→ I as k → ∞.

E-condition: We say that a sequence {Gi} satisfies E-condition if any se-

quence {fik
} (fik

∈ Gik
(∈ {Gi})) satisfying that for each k, card[fix(fik

)] = ∞

and fik
→ I as k → ∞ has uniformly bounded torsion.

EP-condition: We say that {Gi} satisfies EP-condition if the following are

satisfied:

(1) for any sequence {fik
}, fik

∈ Gik
(∈ {Gi}), if card(fix(fik

)) = ∞, for

each k, and fik
→ f as k → ∞, where f is I or parabolic, then {fik

} has

uniformly bounded torsion;

(2) {Gi} satisfies Property A.

Jørgensen’s inequality ([11]) implies that

Proposition 2.2: For n = 1 or 2, each sequence {Gi} of discrete groups

of M(R̄n) satisfies Property A. Hence it also satisfies E-condition and EP -

condition.

The following propositions are obvious.

Proposition 2.3: For any sequence {Gi} of discrete groups of M(R̄n), if {Gi}

has uniformly bounded torsion, in particular, if {Gi} is torsion-free, then it

satisfies both E-condition and EP -condition.

Proposition 2.4: A sequence {Gi} of discrete groups of M(R̄n) satisfies E-

condition if and only if it satisfies Condition A in [8].

Remark 2.1: The example in [6] or [8] shows that there exists a sequence of

discrete groups of M(R̄n) which satisfies both E-condition and EP -condition,

but it is neither torsion-free nor has uniformly bounded torsion.

The following lemma is crucial for us (Theorem 11 in [20]).
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Lemma 2.1: Let f , g ∈ M(R̄n). If the group 〈f, g〉 generated by f and g is a

Kleinian group, then

‖f − I‖ · ‖g − I‖ ≥ 1/32.

Let G ∈ M(R̄n) be non-elementary and let H(G) denote the set consisting

of all loxodromic elements in G. As in [16] or [17], we let

WY (G) = {g ∈ G : fix(f) ⊂ fix(g) for all f ∈ H(G)}.

Obviously, for any non-elementary subgroup G of M(R̄n), each element in

WY (G) fixes L(G) (the limit set of G) pointwise. By using WY (G), we have

obtained several criteria for subgroups of M(R̄n) to be discrete, see [16, 17, 18].

Remark 2.2: When n = 1 or 2, for any non-elementary group G in M(R̄n),

WY (G) = {I}.

The next result follows directly from [10, 15] or [19].

Lemma 2.2: If G ∈ M(R̄n) is discrete and each non-trivial element of G is of

finite order, then G is finite.

Lemma 2.3 ([14]): If G ⊂ M(R̄n) is finite, then card(
⋂

f∈G fix(f)) 6= 1.

3. Main Lemma

Let {fi} and {gi} be two sequences of M(R̄n), which converge to f and g,

respectively, and for each i, 〈fi, gi〉 is a Kleinian group. The question of when

the group 〈f, g〉 is a Kleinian group has been discussed by several authors, see

[7, 8, 21] etc. The main goal of this section is to prove a result which is a

generalization of the corresponding questions in [7, 8, 21] by using different

methods.

In order to prove our main lemma, we need the following.

Lemma 3.1: Let f ∈ M(R̄n) be parabolic. If the group 〈f, g〉 generated by f

and g ∈ M(R̄n) is non-elementary, then the elements f , gfg−1 and (fg)f(fg)−1

have no common fixed point.

Our main lemma is as follows.

Lemma 3.2: Let {fi} and {gi} be as stated above. Suppose that each group

〈fi, gi〉 is a Kleinian group and each fi is of infinite order. Then f is of infinite

order and 〈f, g〉 is a Kleinian group if {〈fi, gi〉} satisfies E-condition.

Proof:



226 X. WANG Isr. J. Math.

(1) We first prove that 〈f, g〉 is discrete.

Suppose that 〈f, g〉 is not discrete. Then 〈f, g〉 is infinite and there is a

sequence {hj} of 〈f, g〉 such that

hj → I as j → ∞.

Let hj,i be the corresponding elements in 〈fi, gi〉 such that

(3.1) hj,i → hj as i → ∞.

These imply that there is a sequence {hjk,ik
} such that

hjk,ik
∈ 〈fik

, gik
〉 and hjk,ik

→ I as k → ∞.

Since {〈fi, gi〉} satisfies E-condition, we have

card[fix(hjk ,ik
)] ≤ 2.

Suppose that there is a subsequence of {〈fi, gi〉} (denoted in the same way)

such that each fi is parabolic, then, by Lemma 3.1, the parabolic elements fi,

gifig
−1

i and (figi)fi(figi)
−1 have no common fixed point each other. By (3.1),

we know, there is a positive M1 such that for all k > M1,

‖hijkp
− I‖ · ‖hjk,ik

− I‖ < 1/32 p = 1, 2, 3,

where hijk1
= fik

, hijk2
= gik

fik
g−1

ik
and hijk3

= (fik
gik

)fik
(fik

gik
)−1.

Since 〈hijkp
, hjk,ik

〉 are discrete, we know that they are elementary by

Lemma 2.1. These imply that fix(hijkp
) ⊂ fix(hjk,ik

) (p = 1, 2, 3). Then

card[fix(hjk,ik
)] ≥ 3 since each fik

is parabolic. This is a contradiction.

Then we may assume that all fi are loxodromic. Since each 〈fi, gi〉 is discrete

and non-elementary, we know that

fix(fi) ∩ fix(gifig
−1

i ) = ∅.

Similar discussions as above will lead to a contradiction.

The above shows that 〈f, g〉 is discrete.

(2) Then we prove that 〈f, g〉 is non-elementary.

We claim that f is of infinite order, i.e., f is parabolic or loxodromic since

〈f, g〉 is discrete. Suppose that there is a positive M such that fM = I. Then

fM
i 6= I and fM

i → I as i → ∞. Hence for sufficiently large i,

‖fM
i − I‖ · ‖gi − I‖ < 1/32.
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By Lemma 2.1, we know that 〈fM
i , gi〉 are elementary for all i > M since they

are discrete. So are 〈fi, gi〉. It is a contradiction.

Now we come to prove that 〈f, g〉 is non-elementary.

Suppose that 〈f, g〉 is elementary. Since 〈f, g〉 is discrete, we can find two

positive integers t and s such that

[f t, gfsg−1] = I.

Let hi = [f t
i , gif

s
i g−1

i ]. Then

hi ∈ 〈fi, gi〉, hi 6= I and hi → I as i → ∞.

Similar discussions as in the proof of part (1) imply that this is impossible.

Hence 〈f, g〉 is non-elementary.

Remark 3.1: In [8], Fang and Nai proved that under the assumptions of Lemma

3.2, and if all gi are not of finite order and {〈fi, gi〉} satisfies Condition A,

i.e., E-Condition in our term, then f is parabolic or loxodromic and 〈f, g〉 is

non-elementary. In the proof of 〈f, g〉 being non-elementary, Fang and Nai

divided their arguments into two cases: (a): 〈f, g〉 is discrete and (b): 〈f, g〉

is not discrete. They had a long discussion to get a contradiction under the

suppositions of 〈f, g〉 being elementary and non-discrete. The proof of Lemma

3.2 implies that the hypothesis “all gi not being of finite order” is unnecessary

and the case “〈f, g〉 being non-discrete” cannot occur since we have proved that

〈f, g〉 is discrete.

4. The Proof of Theorem 1.1

Claim 1: Gr is discrete.

Suppose that Gr is not discrete. Then there is a sequence {gj} of Gr such

that

gj → I as j → ∞.

It follows from the proof of Lemma 3.2 that we can find a sequence {gjk,ik
}

such that

(4.1) gjk,ik
∈ Gr,ik

and gjk,ik
→ I as k → ∞.

We divide our discussion into two cases in the following.
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Case I: n is odd.

Since {Gr,i} satisfies EP -condition, by Proposition 2.1, we may assume that

for each k, gjk,ik
is of infinite order (i.e., gjk,ik

is parabolic or loxodromic), or

fixed-point-free.

If the sequence {gjk,ik
} contains a subsequence (denoted by the same way)

such that all its elements are of infinite order, then for each k, there is at least

one generator of Gr,ik
, say f1,ik

(if needed , we can take a subsequence of {gjk,ik
}

since r is finite), such that 〈f1,ik
, gjk,ik

〉 is non-elementary. By Lemma 2.1, it is

impossible.

Hence, we may assume that each gjk,ik
in (4.1) is fixed-point-free and of order

at least 3. Further, we may assume that gjk,ik
does not interchange any two

different points. If not so, then

g2
jk,ik

6= I, card[fix(g2
jk,ik

)] = ∞ and g2
jk,ik

→ I as k → ∞.

This is impossible.

By (4.1), there is a positive number N such that for all k > N and each

generator fs,ik
of Gr,ik

(s = 1, 2, . . . , r),

‖gjk,ik
− I‖ · ‖fs,ik

− I‖ < 1/32.

This implies that 〈gjk,ik
, fs,ik

〉 is elementary. Hence, each fs,ik
is of finite order,

and gjk,ik
and fs,ik

(s = 1, 2, . . . , r) have one and only one common fixed point

in Hn+1. Since gjk,ik
has only one fixed point in Hn+1, this implies that Gr,ik

is elementary. It is a contradiction.

Case II: n is even.

Since {Gr,i} satisfies EP-condition, by Proposition 2.1, we may assume that

card[fix(gjk,ik
)] = 1 or 2

for each k.

Furthermore, similar discussions as in Case I show that we may assume that

ord(gjk ,ik
) < +∞ and card(fix(gjk ,ik

)) = 2 for each k.

A: Suppose that there is a subsequence of {Gr,ik
} (still denoted in the same

way) such that for each k, at least one of the generators of Gr,ik
, say f1,ik

(if

necessary, passing to a subsequence), satisfies that

fix(gjk,ik
) ∩ fix(f1,ik

gjk,ik
f−1

1,ik
) = ∅.

It is impossible since {Gr,i} satisfies EP -condition and f1,ik
gjk,ik

f−1

1,ik
→ I as

k → ∞.
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Now we may assume that for each k and each generator fs,ik
(s = 1, 2 . . . , r)

of Gr,ik
,

fix(gjk,ik
) ∩ fix(fs,ik

gjk,ik
f−1

s,ik
) 6= ∅.

B: Suppose that there is a subsequence of {Gr,ik
} (denoted in the same way)

such that at least one of the generators of {Gr,ik
}, say f1,ik

(if necessary, passing

to a subsequence), satisfies that

card(fix(gjk,ik
) ∩ fix(f1,ik

gjk,ik
f−1

1,ik
)) = 1.

By Lemma 2.3, 〈gjk,ik
, f1,ik

gjk,ik
f−1

1,ik
〉 is infinite. It follows from Lemma 2.2

that 〈gjk,ik
, f1,ik

gjk,ik
f−1

1,ik
〉 contains parabolic element, say qik

. Then

qik
∈ Gr,ik

, qik
→ I as k → ∞.

By the discussions as in the first part of Case I, we know that it is impossible.

Cases A and B imply that we may assume that for each k and each generator

fs,ik
(s = 1, 2 . . . , r) of Gik

, fix(gjk,ik
) = fix(fs,ik

gjk,ik
f−1

s,ik
). Then Gr,ik

pre-

serves fix(gjk,ik
) setwise. This means that Gr,ik

is elementary. It is our desired

contradiction.

The above proves the discreteness of Gr.

Claim 2: Gr is infinite.

Suppose that Gr is finite. As in the proof of Proposition 5.8 in [13], we can

find a sequence {hi} such that {hi} ∈ Gr,i and hi → I as i → ∞. Similar

discussions as in the proof of Claim 1 show that it is impossible. Hence Gr is

infinite.

Claim 3: Gr is non-elementary.

Suppose that Gr is elementary. It follows from Claim 2 and Lemma 2.2 that

Gr contains some element h of infinite order, i.e, h is parabolic or loxodromic.

Let {hi} be the corresponding words in {Gr,i}. Then it is clear that

hi → h as i → ∞.

Suppose that h is loxodromic. Then for all sufficiently large i, hi are loxo-

dromic. For each generator fs (s = 1, 2 . . . , r) of Gr, there are ks and ps such

that [hks , fsh
psf−1

s ] = I (cf., [9]). Then there exists some 1 ≤ s ≤ r, passing to

a subsequence if needed, such that

[hks

i , fs,ih
ps

i f−1

s,i ] 6= I and [hks

i , fs,ih
ps

i f−1

s,i ] → I as i → ∞.
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The discussions as in Claim 1 show that it is impossible. It follows that h is

parabolic.

Since {Gr,i} satisfies EP -condition, we know that the order of hi is infinite

(i.e., hi is parabolic or loxodromic) or fixed-point-free or elliptic element with

only two fixed points. Suppose that there is a subsequence of {hi} such that

each hi is parabolic or loxodromic. Then for i, there is a generator, say f1,i, such

that the group 〈f1,i, hi〉 is non-elementary. By Lemma 3.2, the limit group of the

sequence {〈f1,i, hi〉} is non-elementary. This implies that Gr is non-elementary.

This is a contradiction.

Suppose that all hi are fixed-point-free.

For any fixed s(s = 1, 2, . . . , r), let fs,i be the corresponding word of fs in

Gr,i. Then fshf−1
s is parabolic and fs,ihif

−1

s,i are fixed-point-free. Thus there

exist two natural numbers k and t such that

[hk, fsh
tf−1

s ] = I (cf., [13]).

It follows from the above discussions that we may assume that for all i, hk
i 6= I,

ht
i 6= I and they are fixed-point-free.

If [hk
i , fs,ih

t
if

−1

s,i ] = I, then hk
i and fs,i have one and only one common fixed

point in Hn+1. This implies that there is at least one generator of Gi, say f1,i,

such that [hk
i , f1,ih

t
if

−1

1,i ] 6= I, otherwise, Gr,i is elementary. We may assume

that there is a sequence, say {fs,i}, since r is finite, such that

[hk
i , fs,ih

t
if

−1

s,i ] 6= I and [hk
i , fs,ih

t
if

−1

s,i ] → I as i → ∞.

By the proof of Claim 1, we know that it is impossible.

Hence we may assume that each hi is elliptic with only two fixed points.

Furthermore, we may assume that for each fixed number m, all hm
i are elliptic

with only two fixed points and do not interchange two different points, since

{Gr,i} satisfies EP -condition.

Similar discussions as above show that it is impossible.

The proof is completed.

5. The Proof of Theorem 1.2

The proof of (1): It follows from Theorem A or Lemma 2.1 that all gs are not

I.

Suppose gs is elliptic or fixed-point-free for some 1 ≤ s ≤ r. Without loss of

generality, we may assume that s = 1. If g1 has order k, then

gk
1,i → gk

1 = I.
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This is impossible by Theorem A. If g1 has the order of infinity, then there is a

sequence {k} such that

gk
1 → I.

Then for sufficiently large k,

‖gk
1 − I‖ · ‖g2 − I‖ < 1/32.

It follows that, for large enough i,

‖gk
1,i − I‖ · ‖g2,i − I‖ < 1/32.

This implies that fix(g1,i) = fix(g2,i). This is impossible.

The proof of (2): Suppose Gr is not discrete. Then there is a sequence {ft} ⊂

Gr such that

ft → I as t → ∞.

As Gr is non-elementary, we know that it contains at least two loxodromic

elements h1 and h2 such that fix(h1) ∩ fix(h2) = ∅. Then for large enough t,

‖ft − I‖ · ‖hj − I‖ < 1/32,

for j = 1, 2. Let hj,i be the corresponding element of hj in Gr,i (j = 1, 2). Then

for sufficiently large i,

‖ft,i − I‖ · ‖hj,i − I‖ < 1/32,

for j = 1, 2. Lemma 2.1 implies that 〈ft,i, hj,i〉 is elementary (j = 1, 2). It

follows that for large enough i,

fix(hj,i) ⊂ fix(ft,i).

Hence, there is T > 0 such that for all t ≥ T ,

fix(hj) ⊂ fix(ft)

for j = 1, 2.

Let

FT ′ =
⋂

t≥T ′

fix(ft).

Then

1 ≤ dim(FT ′) = r ≤ n − 2.
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Suppose that Gr contains a loxodromic element h such that fix(h) ∩ FT ′ 6=

fix(h). Then the discussions as above shows that there is T1 > T ′ such that

fix(h) ⊂ FT1

and

r + 1 ≤ dim(FT1
) ≤ n − 2.

Thus we know that there exists T (≥ T1) such that for any loxodromic element

g ∈ Gr,

fix(g) ⊂ FT .

This shows that

ft ∈ WY (Gr)

for all t ≥ T . This is the desired contradiction.

Acknowledgement: The author thanks the referee for his (or her) valuable

comments.
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